If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (3x2 + 2xy + 2x) * dx + (x2 + 2y) * dy = 0 Reorder the terms: (2x + 2xy + 3x2) * dx + (x2 + 2y) * dy = 0 Reorder the terms for easier multiplication: dx(2x + 2xy + 3x2) + (x2 + 2y) * dy = 0 (2x * dx + 2xy * dx + 3x2 * dx) + (x2 + 2y) * dy = 0 (2dx2 + 2dx2y + 3dx3) + (x2 + 2y) * dy = 0 Reorder the terms for easier multiplication: 2dx2 + 2dx2y + 3dx3 + dy(x2 + 2y) = 0 2dx2 + 2dx2y + 3dx3 + (x2 * dy + 2y * dy) = 0 2dx2 + 2dx2y + 3dx3 + (dx2y + 2dy2) = 0 Reorder the terms: 2dx2 + 2dx2y + dx2y + 3dx3 + 2dy2 = 0 Combine like terms: 2dx2y + dx2y = 3dx2y 2dx2 + 3dx2y + 3dx3 + 2dy2 = 0 Solving 2dx2 + 3dx2y + 3dx3 + 2dy2 = 0 Solving for variable 'd'. Move all terms containing d to the left, all other terms to the right. Factor out the Greatest Common Factor (GCF), 'd'. d(2x2 + 3x2y + 3x3 + 2y2) = 0Subproblem 1
Set the factor 'd' equal to zero and attempt to solve: Simplifying d = 0 Solving d = 0 Move all terms containing d to the left, all other terms to the right. Simplifying d = 0Subproblem 2
Set the factor '(2x2 + 3x2y + 3x3 + 2y2)' equal to zero and attempt to solve: Simplifying 2x2 + 3x2y + 3x3 + 2y2 = 0 Solving 2x2 + 3x2y + 3x3 + 2y2 = 0 Move all terms containing d to the left, all other terms to the right. Add '-2x2' to each side of the equation. 2x2 + 3x2y + 3x3 + -2x2 + 2y2 = 0 + -2x2 Reorder the terms: 2x2 + -2x2 + 3x2y + 3x3 + 2y2 = 0 + -2x2 Combine like terms: 2x2 + -2x2 = 0 0 + 3x2y + 3x3 + 2y2 = 0 + -2x2 3x2y + 3x3 + 2y2 = 0 + -2x2 Remove the zero: 3x2y + 3x3 + 2y2 = -2x2 Add '-3x2y' to each side of the equation. 3x2y + 3x3 + -3x2y + 2y2 = -2x2 + -3x2y Reorder the terms: 3x2y + -3x2y + 3x3 + 2y2 = -2x2 + -3x2y Combine like terms: 3x2y + -3x2y = 0 0 + 3x3 + 2y2 = -2x2 + -3x2y 3x3 + 2y2 = -2x2 + -3x2y Add '-3x3' to each side of the equation. 3x3 + -3x3 + 2y2 = -2x2 + -3x2y + -3x3 Combine like terms: 3x3 + -3x3 = 0 0 + 2y2 = -2x2 + -3x2y + -3x3 2y2 = -2x2 + -3x2y + -3x3 Add '-2y2' to each side of the equation. 2y2 + -2y2 = -2x2 + -3x2y + -3x3 + -2y2 Combine like terms: 2y2 + -2y2 = 0 0 = -2x2 + -3x2y + -3x3 + -2y2 Simplifying 0 = -2x2 + -3x2y + -3x3 + -2y2 The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined.Solution
d = {0}
| x/3-7=20 | | 4(2x+3)-5(4x-6)= | | 3(4+2k)=-2(7+k) | | 12(2h-7)=24(5+3h) | | 5m+4=10(3-9m) | | 60+x+3+4x+8=180 | | 60+x+3+4x+18=180 | | 2x+20+x+20+40=180 | | x+20+120+x=180 | | 40+2x+30+x+20=180 | | 4(3+2v)=3(2v-8) | | x+30+70+2x+10=180 | | x+60+40+x=180 | | 3(3y+75)=11y-9 | | 74-9/5=24 | | 3e^2x=330 | | 74-9=24/5 | | 1.5•m•n/m | | 1.5m•n/m= | | 1.5mn/m= | | 10n-20=180 | | 10y^2-2=7 | | sin(2x)+4cosx=0 | | 6x^2-32x+48=0 | | (90-x)=10-1/5(180-x) | | x*3.21x=452 | | f(x)=x^4+4x^3+5x^2-6x+7 | | 200=3x-16 | | x*2.3x=412 | | 70=1/4x-10 | | x+2.3x=412 | | 3x+x=136 |